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Knots in Physical Systems

Knots in DNA strands

Tying a microtubule with optical twizzers
Knotted jets in accretion disks (MHD)
Strain on knot (MD)



Knots & Topological Constraints

e Knots happen
probability(no knot) ~ exp(—N/Np)
e Knots tighten (1" = 00)
n/N — 0 when N — o0
e Reduce size of chain (m = knot complexity)
R~ N"m™© a=v—1/3
e Reduce accessible phase space
e Large relaxation times
Treptation ™ N
e Weaken macromolecule

e Bio: affect chemistry, function



Granular Chains

Mechanical analog of bead-spring model

U({Rz}) = Vo Z 5(Rz — Rj) —+ 211)2 . (Rz — Ri—|—1)2

1#] 0
e Beads/rods interact via hard core repulsions
e Rods act as springs (nonlinear, dissipative)
o Inelastic collisions: bead-bead, bead-plate

e Vibrating plate supplies energy

e Athermal, nonequilibrium driving

Advantages

e Number of beads can be controlled

e Topological constraints: can be prepared,
observed directly



Vibrated Knot Experiment

o t = 0: trefoil knot placed at chain center
e Parameters

— Number of monomers: 30 < N < 270
— Minimal knot size: Ny = 15

e Driving conditions

— Frequency: v =13Hz
— Acceleration: T' = Aw?/g = 3.4

Only measurement: opening time ¢

1. Average opening time 7(N)?

2. Survival probability S(t, N)?
Distribution of opening times R(t, N)?



The Average Opening Time
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T(N)~ (N = No)¥  v=20+0.1

Opening time is diffusive




The Survival Probability

e S(t,N) Probability knot “alive” at time ¢
e R(t,N) Probability knot opens at time ¢

t
S(t,N)=1 —/ dt' R(t', N)
0
e S(t, N) obeys scaling

t
S(t,N)= F(z) Z:T(N)
1 —
0.8 |
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7 only relevant time scale




Theoretical Model

A Y X

Assumptions

e Knot = 3 exclusion points
e Points hop randomly
e Points move independently (no correlation)

e Points are equivalent (size = Ny/3)
3 Random Walk Model

e 1D walks with excluded volume interaction

e first point reaches boundary — knot opens



Diffusion in 3D

l<xi<zo<zz3<lN — Ny — O<z<y<z<l

%P(x,y, z,t) = V2P(a:,y, z, 1)

e Boundary conditions

Absorbing: P| _ =P| =0

Reflecting: (8, — 8,)P|s=y = (8, — 9.)P|,=. =0

e Initial conditions P‘t:0:5(x—:1:0)5(y—x0)5(z—a;'o)

e Survival probability

1 1 1
S3(t) :/ da:/ dy/ dz P(x,y,z,t)
0 x Y

3 walks in 1D = 1 walk in 3D




Product Solution

Product of 1D solutions
P(z,y,2,t) = 3! p(x,1)p(y, t)p(z,1)
1D case plo—0 = ple=1 =0 pli=o = 6(x — x0)
pt(T,t) = Poa(®,t)
1 walk survival probability s(¢) = fol dx p(x,t)

_4 i sin|(2k + 1 on]e—(2k+1)27r2t
™= 2k + 1

m interacting walks survival probability
Sm(t) = [s(t)]™
Average opening time

(N — Ny)?
D

(t) >~ Ty 73 = 0.056213

Reduced to noninteracting problem




Alternative Derivation

. 2<\

Exchange identities of walkers when paths cross




Experiment vs. Theory

e Work with scaling variable z =t/7 ((z) = 1)
e Combine different data sets (6000 pts)

e Fluctuations o2 = (22) — (2)?

Oexp = 0.62(1), Ttheory = 0.63047 (< 2%)
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Excellent quantitative agreement




The Exit Time Probability

Scaling function
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Large Exit Times

e Largest decay time dominates

o Large time tail is exponentially small

F(2) ~ e P? z>1

e Decay coefficient g = mn?7,

Bexp = 1.65(2)  Btheory = 1.66440
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Small Exit Times

e Exponentially small (in 1/2) tail
1 — F(2) ~ z/2e70/2 z L1

e Decay coefficient a = 1/167,,

Qoxp = 1.2(1)  Opneory = 1.11184  (10%)
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Heuristic Argument (short times)

e Use scaling form

S(t.N) ~ F (%)

e Smallest exit timet=2%,1— 5~ 27N/2

2
1—F<N> ~ e_aN N — o0

1—F(z) ~ e &7 z—0

e Analytic calculation: Laplace transform of
s(t) + steepest descent

1 — F(2) ~ z1/2e72/2

e Complex knots: e/t ~ m~1

1
T~NO~N—— m > 1
Inm



F(2)

Different knots (m =1, 3, 5, 7)
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Off-Center Initial Conditions

10

S(t,N=114)
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Decay coefficient independent of x

2

Sp(t) ~ A(xg)e ™™ !

Eventually, initial conditions are forgotten




Knots Opening & the
Gambler Ruin Problem

e The exit probability
V2E(£131, ce ,xd) =0
e Linear in 1D: F(xzg) = xg
e In general dimension d =m
E(x()) ~ (ﬂfo)d Ty <K 1
e [he average exit time
DV*T(xq,...,2q) = —1

e General solution

B(xg) = 5 (f)d $ S22 DM kg sinlkywag] y sinl(2k; + D]
a 2 ~d :

1 a1 X LS 1 4 sin[(2k; + 1)mzg)

Knot opening = 3 gamblers ruin
problem with fixed wealth hierarchy



Predictions

T(X,), 9(xo)

e Good agreement for S(t), Star(t), Sclose(t)
e Poor agreement for E(xq), T (xo)

o Current data insufficient (600pts)

Fluctuations diverge near boundary




Conclusions

e Knot governed by 3 exclusion points
o Exponential tails (large & small exit times)

e Macroscopic observables (¢, S(t)) reveals
details of a topological constraint

e Knot relaxation governed by number of
crossing points

o Athermal driving, yet, effective degrees of
freedom randomized

Outlook

o Different knot types

e Correlation between crossing points

Many possibilities with granular chains




Entropic Tightening
with Matthew Hastings, Zahir Daya, Robert Ecke

e Equilibrium (counting states) prediction

P(n) o< [n(N —n)] =%/

n/N — 0 when N — o0

e Observed under nonequilibrium driving

Role of entropy?




Johnathan Mcay B

My soul 1s an entangled knot
Upon a liquid vortex wrought

The secret of its untying

In four-dimensional space s lying

J. C. Maxwell



